

October 6, 2023

DRAFT REPORT

ASHRAE Level-II Energy Audit Study

NEWYORK ENGINEERS

Grand Cayman Campus – Model 2 Hon. James Bodden Block

Disclaimer

The goal of this energy study is to identify potential energy efficiency and carbon reduction opportunities, help prioritize specific measures for implementation. Most energy conservation measures have received preliminary analysis of feasibility that identifies expected ranges of savings and costs. This level of analysis is usually considered sufficient to establish a basis for further discussion and to help prioritize energy measures. NYE reviewed the energy conservation measures and estimates of energy savings were reviewed for technical accuracy. Actual, achieved energy savings depend on behavioral factors and other uncontrollable variables and, therefore, estimates of final energy savings are not guaranteed. NYE shall in no event be liable should the actual energy savings vary. NYE bases estimated installation costs on our experience at similar facilities, pricing from US & Cayman Island local contractors and vendors, and/or cost estimates from RS Means. We encourage the owner of the facility to independently confirm these cost estimates and to obtain multiple estimates when considering measure installations. Actual installation costs can vary widely based on individual measures and conditions. NYE does not guarantee installed cost estimates and shall in no event be held liable should actual installed costs vary from estimates. The customer and their respective contractor(s) are responsible to implement energy conservation measures in complete conformance with all applicable Cayman Island Local Laws.

Table of Contents

Disclaimer	2
Introduction	6
Methodology	6
Energy Audit Team	7
Executive Summary	8
Cost reduction opportunities	8
ECM Summary Table	10
Energy Efficient Practices	
On-Site Generation Measures	
ECM Summary and Increase in Building Value	12
Emissions Outlook	
Facility Information and Existing Condition	s14
General Site information	14
Envelope Description	14
Occupancy	14
Space Cooling System	15
Lighting Power	16
Plug Load	16
Equipment Control	18
Indoor Air Quality (IAQ)	19
Building Energy Use and Costs	20
Total Cost of Energy	20
Utility Usage	21
Utility Billing	21
Building Utility Consumption	23

Energy End-Use Breakdown	24
Model Calibration	25
Calibrated Model as per existing conditions	
Energy Conservation Measures	27
Energy Conservation Measures	28
ECM #1 Lighting Controls	28
ECM #2 Window Upgrade	29
ECM #3A Building Management system (BMS) – Night setback (NSB)	30
ECM #3B Building Management system (BMS) – Fan Schedule	31
ECM #3C Building Management system (BMS) – Optimal On-off	32
ECM #4 Weatherization	
ECM #5 Solar PV Installation	34
On-Site Generation Measures	35
Photovoltaic	35
Intelligent Building Management System Measures	38
Energy Efficient Best Practices	41
Appendix – A	44
3D Model Images	44
Appendix - B	46
Energy Model inputs and reference	46
Rooftop Solar PV capacity Helioscope report	
ASHRAE Epidemic task force	48
Appendix - C	49
Monthly ECMs Saving Details	
Calibration Results	49

Appendix - D	50
Lighting power Density (LPD) calculation sheet	
Equipment power Density (EPD) calculation sheet	52
HVAC System Audit Survey sheet	53
Appendix – E	54
Estimated Costing per ECMs	54

Introduction

Grand Cayman Campus, The Hon. James Bodden Block is a Two-story, 6,905-square-foot structure on 168 Olympic Way, Cayman Islands. This building was built in early 20s and is zoned as an educational facility. New York Engineers performed an ASHRAE-II energy audit and made recommendations for energy efficiency solutions.

Dr. Robert Robertson, Principle In-charge of University College of Cayman Islands (UCCI), contracted New York Engineers (NYE) to perform an ASHRAE Level 2 Energy Audit and solar feasibility study at Grand Cayman Campus. The purpose of the energy audit is to identify energy savings opportunities. NYE built a calibrated energy model based on utility data, building drawings, and site access provided by UCCI. The model was developed with eQuest software, and Energy Conservation Measures (ECM) were applied to acquire the findings of this report.

Methodology

This audit is per ASHRAE Level II requirements. This audit includes a review of existing drawings, annual utility bills, and other data; one-week site visits to check equipment conditions and working performance; Mr. Vishwaraj Nimbalkar and Mr. Thomas Dugan conducted one-week site visits from July 10–15, 2023.

The energy analysis is performed using standard engineering calculation procedures and the building energy simulation program eQuest, an hour-by-hour energy usage modeling program evolved from DOE2, which was jointly developed by National Laboratories for the U.S. Department of Energy. While eQuest is generally accepted as one of the most accurate building energy simulation programs, the estimated energy usage should not be interpreted as an absolute prediction.

The actual energy usage may differ from the prediction due to variables beyond the energy analyst's control. These may include changes in occupancy, schedules, final equipment selection, installation, and operation, weather variations from typical year data used, and other unforeseen circumstances.

A baseline building energy performance model was first developed based on the existing building conditions. Energy conservation measures (ECMs) were identified and analyzed by modifying the baseline building to reflect the impact of each ECM on the building's energy performance. An interactive model was created to simulate the net effect of all ECMs.

The cost-effectiveness of each ECM was evaluated using a simple payback analysis, which yields the time required to recover the cost of implementing the ECM by its annual energy cost savings. The ECM cost estimates are either obtained from RSMeans data or provided by the US & Cayman Island local equipment vendors.

Energy Audit Team

The NYE team conveys their gratitude and thanks to the management of M/s UCCI, Grand Cayman Campus, 168 Olympic Way, PO Box 702 Grand Cayman, Cayman Islands KY1-1107 for giving us an opportunity to study their building & campus for the Energy Audit, which was conducted in July 10-14, 2023.

Institutional Contact information

Name	E-mail	Phone
Dr. Robert Robertson, president/CEO	-	+1 (345) 623-8224
Cleveland Julien, Project Manager	CJulien@ucci.edu.ky	+1 (345) 623-0528
Sherrilyn Harvey, Facilities Administrator	sharvey@ucci.edu.ky	-
Fernando McLaughlin, Facilities management	FMcLaughlin@ucci.edu.ky	+1(345)-623-0505

Auditor Contact Information

Name	E-mail	Phone
Mr. Vishwaraj Nimbalkar PE, CEM, CEA, CBCP	VNimbalkar@nyc-engineers.com	718-689-7322
Mr. Thomas Dugan, Mechanical Energy Engineer	TDugan@nyc-engineers.com	646-907-5095

Executive Summary

The Hon. James Bodden building's main energy-consuming appliances, including HVAC systems, lighting systems, and process loads, were inspected by the NYE team. There are nine cooling condensing units and one split DX (direct expansion) system in the Hon. James Bodden Block building. The sick bay, faculty offices, chemistry lab, classrooms, biology lab, microbiology lab and computer labs are cooled by condensing units. Classroom 1 is also cooled by a Split DX system.

Cost reduction opportunities

Several energy conservation measures were studied, including those for the building's HVAC heating, ventilation, air-conditioning, Building management system, and lighting. The potential of energy conservation measures (ECMs) implementation is to reduce the total energy consumption by 286 MMBtu and annual greenhouse gas emissions by about 71 tons of CO2e.

Refer to table 1 for an ECM summary for energy values of each measure and table 2 for cost values and simple payback calculations.

The breakdown of existing utility costs and projected annual savings following implementation of all measures are shown in graph 1. Together these measures represent an opportunity to reduce UCCI annual energy usage by about 88% overall.

Graph 1: Potential Cost Savings

A detailed description of UCCI existing energy usage can be found in Section Building Energy Use and Costs. Estimates of total cost, energy savings, and financial incentives, which may be available for each ECM, are summarized below in Table 1 & 2. A brief description of each measure category can be found below. A detailed description of each ECM can be found in Section Energy Conservation Measures.

ECM Summary Table

Table 1 Energy Conservation Measure Summary for Hon. James Bodden Block

			Annu	al Energy Savir	ngs			
Measure Number	Measure Description	Annual Energy Use (kWh)	Total Energy Use (MMBtu)	Ton CO2 emission	Saving ton Co2 Emission	Electricity Savings (kWh)	Total Energy Savings (MMBtu)	Energy Savings to Total Baseline use (%)
	Baseline Consumption	95,460	326	81			-	
ECM-1	Lighting Control	90,765	310	77	4	4,695	16	5%
ECM-2	Window Upgrade	93,997	321	80	1	1,463	5	2%
ECM-3A	BMS – Night Setback (NSB)	78,973	269	67	14	16,487	56	17%
ECM-3B	BMS – Fan Schedule	85,268	291	72	9	10,192	35	11%
ECM-3C	BMS – Optimal ON-OFF	93,446	319	79	2	2,014	7	2%
ECM-4	Weatherization	82,665	282	70	11	12,795	44	13%
ECM-5	Solar PV (17.3 kW)	59,156	202	50	31	36,304	124	38%
		Total			71	83,950	286	88%

Table 2: Energy Conservation Measure Results with Payback

		Annual Energy	Savings				Payback Analysi	S
Measure Number	Measure Description	Electricity Savings (kWh)	Total Energy Savings (MMBtu)	Electric Cost Savings (\$)	Total Energy Cost Savings (\$)	Measure Cost	Saving ton Co2 Emission	Simple Payback (years)
ECM-1	Lighting Control	4,695	16	\$1,174	\$1,174	\$2,849	4	2
ECM-2	Window Upgrade	1,463	5	\$366	\$366	\$3,909	1	11
ECM-3A	BMS – Night Setback (NSB)	16,487	56	\$4,122	\$4,122	\$17,358	14	4
ECM-3B	BMS – Fan Schedule	10,192	35	\$2,548	\$2,548	\$7,925	9	3
ECM-3C	BMS – Optimal ON-OFF	2,014	7	\$504	\$504	\$2,148	2	4
ECM-4	Weatherization	12,795	44	\$3,199	\$3,199	\$18,021	11	6
ECM-5	Solar PV (17.3 kW)	36,304	124	\$9,076	\$9,076	\$35,223	31	4
	Total	83,950	286	\$20,988	\$20,988	\$87,433	71	4

ENERGY EFFICIENT PRACTICES

A facility's energy performance can be significantly improved by employing certain behavioral or operational adjustments and by performing better routine maintenance on building systems. These practices can extend the equipment's lifetime, improve occupant comfort, provide better health and safety, as well as reduce annual energy and O&M costs.

Potential opportunities identified at UCCI include:

- Reduce Air Leakage
- Close Doors and Windows
- Ensure Lighting Controls Are Operating Properly
- Reduce Motor Short Cycling
- Perform Routine Motor Maintenance
- Practice Proper Use of Thermostat Schedules and Temperature Resets
- Ensure Economizers are Functioning Properly
- Check for and Seal Duct Leakage
- Perform Proper Water Heater Maintenance
- Install Plug Load Controls
- Replace Computer Monitors
- Water Conservation

For details on these energy efficient practices, please refer to Section Energy Efficient Best Practices.

ON-SITE GENERATION MEASURES

NYE evaluated the potential for installing on-site generation for UCCI campus. Based on the configuration of the site and its loads there appears to be low potential for cost-effective installation of any solar PV or combined heat and power self-generation measures. For details on our evaluation and on-site generation potential, please refer to Section On-Site Generation.

ECM SUMMARY AND INCREASE IN BUILDING VALUE

As a result of our study, a package of utility cost savings was bundled together based on our findings. The measures include upgrades for the building envelope, lighting system, and HVAC. Implementation cost, simple payback, and energy savings have all been calculated.

• The package includes lighting Control, window upgrade, building management system on night setback (NSB), fan schedule, Optimal on-off and solar PV installation.

Upon completion of installation, the building's value will immediately increase due to a higher net operating income. The net operating income increase has been calculated via energy savings and penalty avoidance. Annual energy savings with penalties avoided are the change in net operating income. Given a capitalization rate of 5% from Marcus & Millichap's Institutional Property Advisors (IPA), the following equation was used to calculate the net operating income increase per recommended package.

Table 3: Increase in Building Value

	Measure Cost	Saving ton CO2 Emission	Annual Energy Savings	Net Property Value Increase
James Bodden Block	\$87,433	71	\$20,988	\$419,750

Capitalization Rate =
$$\frac{\Delta \ Net \ Operating \ Income}{\Delta \ Value \ of \ Property}$$

EMISSIONS OUTLOOK

Cayman Island sustainability development goals report determined that some progress has been made towards the 2030 target. According to the Cayman Islands' 2021 Census Report, Cayman has achieved almost universal access to electricity, i.e. 97 per cent of Caymanian households have access to electricity. Energy policy aims to reduce greenhouse case emissions from 12.3 tCO2 e per person in 2014 to 4.8 tCO2 e by 2030

In February 2017, the Cabinet approved the Cayman Islands' NEP 2017–2037. The NEP, first drafted in 2013, and reviewed in 2016, set a target of generating 70 per cent of electricity from renewable sources by 2037. When the target was set in 2015, more than 99 per cent of energy in the Cayman Islands was generated from oil products. At that time, renewable energy accounted for 0.2 per cent of electricity generation. In the seven years since the target was set, little progress has been made. By February 2023, renewable energy contributed 3 percent of Grand Cayman's total energy production. Significant effort will be needed to increase the use of renewable energy over the next 15 years and to achieve the target of 70 percent.

Facility Information and Existing Conditions

GENERAL SITE INFORMATION

Table 4: General Site information

BUILDING DETAILS				
Client Name	Dr. Christopher Williams			
Property Superintendent	Cleveland Julien			
Building Name	Hon. James Bodden Block			
Total SF	6,906 SF			
Number of Buildings	1			
# Stories	1 Floors			

ENVELOPE DESCRIPTION

The envelope or building exterior exchanges energy with the outside air and absorbs energy from the sun, affecting the energy required by the building's HVAC system for indoor comfort. The details of the envelope parameter for the existing building are as follows:

- Exterior Wall: The exterior wall of the project has a U-value, which is the inverse of the R-value and is calculated as 0.580 Btu/h-ft2-°F.
- Exterior Roof: The exterior roof of the project has minimal insulation to resist the heat flow from the sun's rays. The U-value, which is the inverse of the R-value, is calculated as 0.034 Btu/h-ft2-°F.
- Exterior Window Glass: The exterior window glass consists of double-pane clear glass. The U-value is calculated as 1.47 Btu/h-ft2-°F, the shading coefficient is calculated as 0.60 and visible light transmittance is 0.80.

OCCUPANCY

The occupancy of the Hon. James Bodden Block has been calculated at 124 ft2 (area/person). The building is open Monday through Friday and closed on the weekends. The typical schedule is presented in the table below. During a typical day.

Table 5: Operational Schedule

BUILDING NAME	WEEKDAY/WEEKEND	OPERATING SCHEDULE
Hon. James Bodden Block	Weekday	9:00 AM to 5:00 PM
Hom sames boaden block	Weekend	Closed

SPACE COOLING SYSTEM

There are nine cooling condensing units in the block. These units are supplied by classrooms, the microbiology lab, the sick bay, the faculty office, the biology lab, the chemical lab, and the computer labs. The six of them are made by Goodman and have a total cooling capacity of 216,000 Btu per hour. GSX160361FG, GSX160241FA, GSX16S301AB, GSX160181FF, GSC140601AA, and GSX16S481AA are the model numbers for these devices. Two more of them, with a cooling capacity of 48,000 Btu/hr., are made by Lennox. Model AFAIR10B24. The last unit manufactured by Bryant Legacy has a cooling capacity of 36,000 Btu/hr. Model number 116BNA036-B is used. One split DX system with an 18,000 Btu/hr. capacity is available to cool Classroom 1. The system's model number is CPA18CD, and Comfortstar is the company that makes it. Additionally, Appendix D includes a list of the HVAC systems.

Figure 1: Condensing units

Figure 2: Split DX Air Conditioning System

LIGHTING POWER

The lighting system in the block is provided mostly by 40-watt linear fluorescent T12 lamps with magnetic ballasts, some 32-watt linear fluorescent T8 lamps, and many compact fluorescent lamps (CFL). Most of the fixtures are 2-lamp or 3-lamp, 4-foot-long troffers with diffusers. Lighting control in most spaces is provided by wall switches. Nearly all of the buildings exit signs have been upgraded to LED fixtures. The building's exterior lighting is minimal and consists primarily of LED surface-mounted fixtures that are controlled by photocells. The lighting plan is used to calculate lighting power density (LPD) on a space-by-space basis. The lighting power density (LPD) for each space is listed in Appendix D.

PLUG LOAD

This building has offices, classrooms, and labs with computers, projectors, printers, monitors, televisions, lab ovens, autoclaves, incubators, freezers, and exhaust fans. The equipment power density (EPD) load has been calculated and is indicated in Appendix D.

Figure 3: Conventional Oven



Figure 5: Projector

Figure 6: Refrigerator

EQUIPMENT CONTROL

There is no centralized BMS system in the building. A 75°F cooling set point is being considered.

INDOOR AIR QUALITY (IAQ)

Indoor air quality (IAQ) is the quality of the air within and around buildings and structures, particularly as it relates to the health and comfort of building occupants. Understanding and controlling common indoor pollutants can help you reduce your risk of developing indoor health issues. However, indoor air pollution can have serious and negative health consequences.

EPA studies of human exposure to air pollutants indicate that indoor levels of pollutants may be two to five times and occasionally more than 100 times, higher than outdoor levels. Because most people spend 90 percent of their time indoors, these levels of indoor air pollutants are of particular concern. The following are examples of good indoor air quality (IAQ) management for this guide:

- Control of airborne pollutants.
- Introduction and distribution of adequate outdoor air.
- Maintaining a comfortable temperature and relative humidity.

Temperature and humidity cannot be overlooked because thermal comfort concerns underlie many complaints about "poor air quality." Inadequate ventilation can increase indoor pollutant levels by not bringing in enough outdoor air to dilute emissions from indoor sources and by not carrying indoor air pollutants out of the area. High temperature and humidity levels can also increase concentrations of some pollutants.

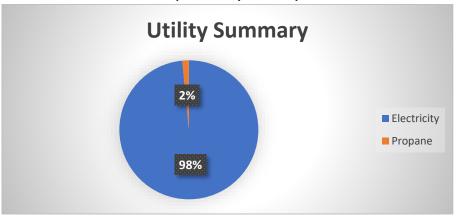
The temperature and humidity of indoor air have been widely recognized as factors that influence directly the thermal sensation of the human body (Fanger 1972). However, they were mainly considered indirect factors that influence perceived air quality due to their influence on indoor air pollution sources.

Outdoor air enters college buildings through windows, doors, and ventilation systems, so it should be considered. As a result, transportation and grounds maintenance activities influence both indoor pollutant levels and outdoor air quality on college grounds.

Building Energy Use and Costs

Home Gas Ltd Supplies on demand propane in UCCI. Caribbean Utilities Company, Ltd. (CUC) supplies utilities in UCCI. It has three electrical services, one (24505-302934) of which is classified as large commercial based on its consumption levels, and the other two (24505-317270 and 24505-342700) are classified as general commercial. At the outset of the review, the metered data for all three services was looked at to determine whether there could be immediate benefits through either the aggregation of the three services into a single metered service or the splitting of the large commercial electrical service into multiple services such that each new service was lowered to general commercial rates. In each case, there were no immediate savings due to the specific consumption characteristics of the electrical services and the charge component differences for the general commercial (consumption-only rates) and large commercial (demand and consumption rates) rate classes. CUC would therefore not recommend, all else being equal, investments made to aggregate or split electrical services for cost-optimization efforts.

Combined utility data for electricity and Propane was evaluated to determine the annual energy performance metrics for the building in terms of energy cost per square foot and energy usage per square foot. These metrics are an estimate of the relative energy efficiency of this building. There are a number of factors that could cause the energy use of this building to vary from the "typical" energy usage profile for facilities with similar characteristics. Please refer to the benchmarking section for additional information.


TOTAL COST OF ENERGY

Twelve months of utility billing data are used to develop annual energy consumption and cost data. This information creates a profile of the annual energy consumption and energy costs.

Table 6: Utility Summary

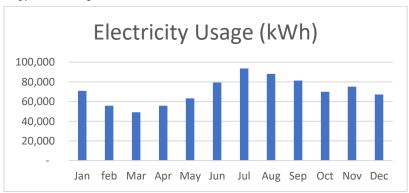
Fuel	Usage	Cost
Electricity	849,420 kWh	\$212,355
Propane	574 Gallon	\$3,329
Total		\$215,684

Graph 2: Utility Summary

An energy balance identifies and quantifies energy use in your various building systems. This can highlight areas with the most potential for improvement. This energy balance was developed using calculated energy use for each of the end uses noted in the figure.

The energy auditor collects information regarding equipment operating hours, capacity, efficiency, drawings and other operational parameters from facility staff and on-site observations. This information is used as the inputs to calculate the existing conditions energy use for the site. The calculated energy use is then compared to the historical energy use, and the initial inputs are revised as necessary to balance the calculated energy use to the historical energy use.

UTILITY USAGE


Utility usage for UCCI includes electricity measured in kilowatt-hours. The electric per unit cost was utilized is \$ 0.25 per kWh.

Electricity is used for the following applications in the base building:

- Base buildings
 - Interior Lighting
 - Plug Loads
 - HVAC system
 - Lab equipment's
 - Kitchen equipment's

UTILITY BILLING

- Electricity
 - Supplied by: Caribbean Utilities Company, Ltd. (CUC)
 - Billed to UCCI
 - □ Number of Meters: 03 (24505-302934, 24505-317270 & 24505-342700)
 - The total average electric cost over the past 12 months was \$0.25/kWh, which is the blended rate that includes energy supply, distribution, demand, and other charges. This report uses this blended rate to estimate energy cost savings.

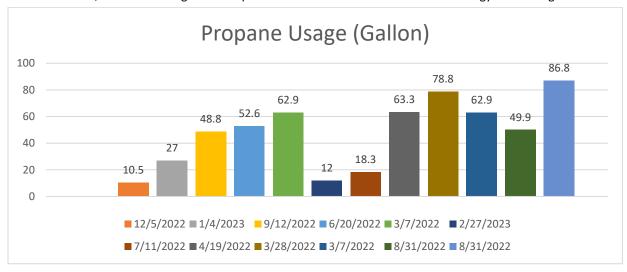

Graph 3: Billed Electricity Consumption (kWh)

Table 7: Annual Electric Usage (kWh)

Month	Electric Usage KWh	Total Electric Cost
January	70,880	\$17,720
February	55,720	\$13,930
March	49,140	\$12,285
April	55,780	\$13,945
May	63,220	\$15,805
June	79,320	\$19,830
July	93,720	\$23,430
August	88,220	\$22,055
September	81,320	\$20,330
October	69,900	\$17,475
November	75,100	\$18,775
December	67,100	\$16,775
Total	849,420	\$212,355

Propane

- ☐ Supplied by: Home Gas Ltd,
- ☐ Billed to UCCI (School Canteen, Lab, Hospitality Kitchen)
- ☐ The average propane cost over the past months was \$5.8/Unit, which is the blended rate that includes, distribution, and other charges. This report uses this blended rate to estimate energy cost savings.

Graph 4: Billed Propane Usage (Gallon)

Table 8: Annual Propane Usage (Gallon)

Usage Description Area	Date	Propane Usage (Gallon)	Total Cost
UCCI School Canteen	12/5/2022	10.5	\$61
168 Olympic way George town	1/4/2023	27	\$157
UCCI School Canteen 168 Olympic way George town	9/12/2022	48.8	\$283
UCCI School Canteen 168 Olympic way George town	6/20/2022	52.6	\$305
UCCI School Canteen 168 Olympic way George town	3/7/2022	62.9	\$365
UCCI School Canteen 168 Olympic way George town	2/27/2023	12	\$70
UCCI School Canteen 168 Olympic way George town	7/11/2022	18.3	\$106
UCCI School Canteen 168 Olympic way George town	4/19/2022	63.3	\$367
UCCI School Canteen 168 Olympic way George town	3/28/2022	78.8	\$457
UCCI School Canteen 168 Olympic way George town	3/7/2022	62.9	\$365
UCCI-Hospitality Kitchen 168 Olympic way Hospitality kitchen Tank	8/31/2022	49.9	\$289
UCCI-Lab-168 Olympic way	8/31/2022	86.8	\$503
Total		574	\$3328

BUILDING UTILITY CONSUMPTION

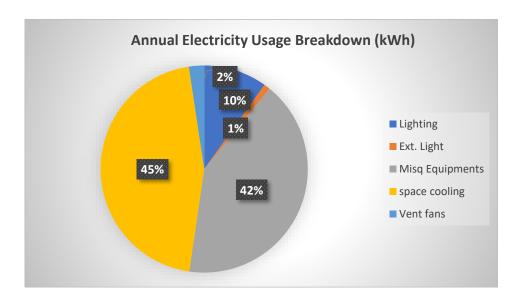

Bodden Block uses electricity as its main sole energy source. The monthly consumption of electricity at each building can be seen in Table 9 below.

Table 9: Annual Electricity Usage (KWH)

Month	Electric Usage KWh	Total Electric Cost (\$)
January	7,289	1,822
February	5,730	1,433
March	5,054	1,263
April	5,736	1,434
May	6,502	1,625
June	8,157	2,039
July	9,638	2,410
August	9,073	2,268
September	8,363	2,091
October	7,189	1,797
November	7,723	1,931
December	6,901	1,725
Total	87,356	21,839

Energy End-Use Breakdown

To provide a complete overview of energy consumption across building systems, an energy balance was performed at this facility. An energy balance utilizes standard practice engineering methods to evaluate all components of the various electric systems found in a building to determine their proportional contribution to overall building energy usage. This chart of energy end uses highlights the relative contribution of each equipment category to total energy usage. This can help determine where the greatest benefits might be found from energy efficiency measures.

Graph 5: Annual Electricity Usage Breakdown

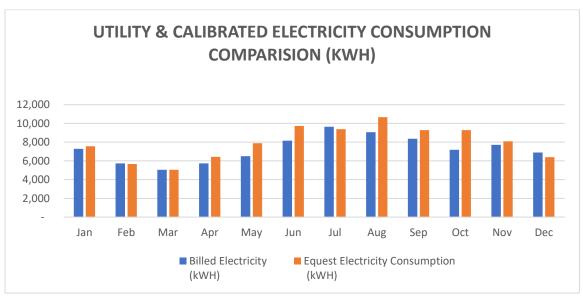
MODEL CALIBRATION

The existing building is modeled with inputs based on the actual conditions of the project, and the existing annual consumption of the building is matched with the energy simulation results within a permissible variation range of ±5%.

CALIBRATED MODEL AS PER EXISTING CONDITIONS

Hon. James Bodden Block Model Result:

The annual electricity and annual natural gas consumption of eQuest, when compared with the baseline building, were calibrated with a variation of -9.3% in the case of annual electricity consumption. The variation is within the permissible range of $\pm 10\%$.


Table 10: Annual calibrated results

Hon. James Bodden Block	
Annual Electricity Consumption Calculation	
Total Annual Electricity Consumption as per Utility Bills (kWh)	87,356
Annual Electricity Consumption as per Baseline Model (kWh)	95,460
Difference Units (kWh)	-8,104
% Variation	-9.3%

The baseline building's consumption as calculated by the eQuest energy modelling tool. Table data 11 and graph 10 compare the monthly electricity usage from the utility bills and the calibrated model.

Table 11: Annual utility billed & baseline consumption

Hon. James Bodden Block - Monthly Electricity Consumption Comparison				
SI. No.	Month		Electricity Consumption as Per Calibrated Model (kWh)	
1	Jan	7,289	7,557	
2	Feb	5,730	5,667	
3	Mar	5,054	5,052	
4	Apr	5,736	6,441	
5	May	6,502	7,880	
6	Jun	8,157	9,740	
7	Jul	9,638	9,395	
8	Aug	9,073	10,676	
9	Sep	8,363	9,280	
10	Oct	7,189	9,284	
11	Nov	7,723	8,096	
12	Dec	6,901	6,392	
	Electricity Imption	87,356	95,460	

Graph 6: Annual utility billed & baseline result comparison

Energy Conservation Measures

The goal of this audit report is to identify potential energy efficiency opportunities, help prioritize specific measures for implementation, and provide information to the UCCI regarding financials for which they may qualify to implement the recommended measures. For this audit report, most measures have received only a preliminary analysis of feasibility which identifies expected ranges of savings and costs.

This level of analysis is usually considered sufficient to demonstrate project cost-effectiveness and help prioritize energy measures. Savings are based on the RMS, USA and Cayman Island Vendors. Further analysis or investigation may be required to calculate more precise savings based on specific circumstances. A higher level of investigation may be necessary to support any Pay for Performance. The following sections describe the evaluated measures.

The measures below have been evaluated by the auditor and are recommended for implementation at the facility.

Table 12: Energy Conservation Measure Results with Simple payback

Annual Energy Savings					Payback Analysis			
Measure Number	Measure Description	Electricity Savings (kWh)	Total Energy Savings (MMBtu)	Electric Cost Savings (\$)	Total Energy Cost Savings (\$)	Measure Cost	Saving ton Co2 Emission	Simple Payback (years)
ECM-1	Lighting Control	4,695	16	\$1,174	\$1,174	\$2,849	4	2
ECM-2	Window Upgradation	1,463	5	\$366	\$366	\$3,909	1	11
ECM-3A	BMS - Night Setback Control (NSB)	16,487	56	\$4,122	\$4,122	\$17,358	14	4
ECM-3B	BMS - Fan Control	10,192	35	\$2,548	\$2,548	\$7,925	9	3
ECM-3C	BMS – Optimal ON- OFF	2,014	7	\$504	\$504	\$2,148	2	4
ECM-4	Weatherization	12,795	44	\$3,199	\$3,199	\$18,021	11	6
ECM-5	Solar PV	36,304	124	\$9,076	\$9,076	\$35,223	31	4
Total		83,950	286	\$20,988	\$20,988	\$87,433	71	4

Energy Conservation Measures

Energy Conservation Measure (ECMs) Results are mentioned below,

ECM #1 LIGHTING CONTROLS

	This measure studies the addition of occupancy sensors to each room's lighting and daylight
	sensors to all rooms with exterior lighting.
Measure Description	This will partially cut back on lighting usage during the day. Occupancy sensors turn a section
	of lighting fixtures and release the lights off after time of no detection. Benefits include:
	 Reduction the unnecessary lighting usage and building's total electricity
	consumption.
Operation and	
Maintenance Impacts	This ECM does not require any maintenance.
	Daylighting controls and occupancy sensors need to be implemented in sections where they
Design Considerations	are beneficial. Discussion with on-site personnel and observation of high daylight should be
Design Considerations	
	conducted to understand where new controls would be beneficial and not disrupt users.
Fating at a d Burgia at Coasts	63.040
Estimated Project Costs	\$2,849
Annual Francis Carriers	Electricity: 4,695 (kWh)
Annual Energy Savings	Total Energy Savings: 16 (MMBTU)
Annual Energy Cost	44.474
Savings	\$1,174
Saving ton CO2	
Emissions	4
Simple Payback (years)	2
Simple Fayback (years)	

ECM #2 WINDOW UPGRADE

Measure Description	New efficient windows have a low solar heat gain coefficient and visual light transmittance value. Upgraded frames with a good seal between the window frame and the wall reduce air infiltration leaks and reduce the cooling load for a building. Heat gain and heat loss through windows are responsible for 25%–30% of residential heating and cooling energy use [DOE] and upgrades will lower that number. Old Windows have many problems like: Messy or Incomplete caulking, properly opening and shutting, Condensation between the glass panes, Drafts and water damage, Glass stains and discoloration, Gaps
Operation and Maintenance Impacts	between the windowsill and frame, uneven windows, and Repair Expenses. None
Design Considerations	 Window selections tips. Look for the ENERGY STAR and NFRC labels. In warmer climates, select windows with coatings to reduce heat gain. Look for a low solar heat gain coefficient (SHGC). SHGC is a measure of solar radiation admitted through a window. Low SHGCs reduce heat gain in warm climates. Look for whole-unit SHGCs, rather than center-of-glass SHGCs. Whole-unit numbers more accurately reflect the energy performance of the entire product.
Estimated Project Costs	\$3,909
Annual Energy Savings	Electricity: 1,463 (kWh)Total Energy Savings : 5 (MMBTU)
Annual Cost Savings	\$366
Saving ton CO2 Emissions	1
Simple Payback (years)	11

ECM #3A BUILDING MANAGEMENT SYSTEM (BMS) – NIGHT SETBACK (NSB)

	A Building Management System (BMS) or centralized control system can manage and		
	monitor building systems and equipment. This will enhance efficiency, comfort, safety,		
	and reduce energy consumption. The BMS feature implemented in this modelled study		
Measure Description	is night setback.		
	 A night setback controls HVAC equipment to run at a lower rate during 		
	unoccupied hours. The strategy optimizes energy usage while still providing full		
	comfort during occupied hours.		
Operation and	Set point temperatures of cooling systems during unoccupied hours should be		
·	monitored. Setback points should reduce the load of equipment while still		
Maintenance Impacts	providing sufficient nighttime cooling for unoccupied buildings.		
	 Designing a Building Management System with a Night Setback feature requires 		
	careful planning and consideration to ensure that it effectively optimizes energy		
Design Considerations	usage while maintaining occupant comfort.		
Design Considerations	The occupant profile, operational schedule, setpoint adjustments, integration of the		
	HVAC system, monitoring, data logging analysis, and energy efficiency optimization		
	should all be accounted for in design.		
Estimated Project	\$17,358		
Costs	\$17,336		
Annual Energy Savings	Electricity: 16,487 (kWh)		
Ailliuai Ellergy Saviligs	Total Energy Savings : 56 (MMBTU)		
Annual Cost Savings	\$4,122		
Saving ton CO2	\$14		
Emissions	,		
Simple Payback (years)	4		

ECM #3B BUILDING MANAGEMENT SYSTEM (BMS) – FAN SCHEDULE

	A Building Management System (BMS) implementation serves as a centralized control
Manage Pagarinting	system managing and monitoring various building systems and equipment to enhance
	efficiency, comfort, safety, and sustainability.
Measure Description	
	This BMS implementation utilizes a fan schedule feature.
	The fan schedule feature optimizes the operation of fans and ventilation systems.
	The fan schedule allows for precise control of fan operation based on occupancy and building
Operation and	needs. Fans can be set to operate only when necessary, reducing energy consumption.
Maintenance	 The feature will yield benefits of improved air quality (IAQ), comfort control,
Impacts	humidity control, and HVAC system integration.
inipacts	Monitoring of fan schedule should be performed to ensure both energy reduction and
	satisfactory occupant comfort.
	Designing a building management system (BMS) with a fan schedule feature involves several
	considerations to ensure efficient operation, occupant comfort, and energy savings.
	Design must consider:
Design	• Zones
Considerations	Occupancy patterns
	Ventilation needs
	Scheduling
	Temperature set points
Estimated Project	
Costs	\$7,925
Annual Energy	Electricity: 10,192 (kWh)
Savings	Total Energy Savings: 56 (MMBTU)
_	
Annual Cost Savings	\$2,548
Saving ton CO2	9
Emissions	
Simple Payback	
(years)	3

ECM #3C BUILDING MANAGEMENT SYSTEM (BMS) - OPTIMAL ON-OFF

	Continuing the additional functions of a BMS, this measure implements an optimal ON-OFF			
	feature.			
Measure Description	 Optimal start-stop control optimizes operation of various building systems and equipment, ensuring energy efficiency, occupant comfort, and operational cost savings. Under optimal start, cooling equipment will begin cooling at just the right time before the occupancy starts, so that setpoint will be met right at the scheduled time. On less hot mornings, cooling will start closer to occupancy hours, and on hotter mornings, cooling will start even earlier. Optimal stop aims to shut the system down before the scheduled unoccupied time and let the building "coast" down. If the outdoor temperature is close to the set point it can shut it down or back off some time before the end of occupancy. 			
	Successful implementation requires careful planning, ongoing monitoring, and proactive			
Operation and	management to ensure the system operates as intended and delivers the expected benefits.			
Maintenance Impacts	Regular maintenance and data analysis are key components of optimizing the long-term			
	performance of a BMS with optimal on-off control.			
Design	Occupancy schedules and activities outside of normal occupant hours need to be considered.			
Considerations	Occupancy scriedules and activities outside of normal occupant hours need to be considered.			
Estimated Project	\$2,148			
Costs	7-,- 13			
Annual Energy	Electricity: 2,014 (kWh)			
Savings	Total Energy Savings: 7 (MMBTU)			
Annual Cost Savings	\$504			
Saving ton CO2	2			
Emissions				
Simple Payback	4			
(years)				

ECM #4 WEATHERIZATION

	Weatherization means protecting a building and its interior from direct sunlight, heat, wind,			
	and humidity by providing air sealing, insulation, moisture removal or ventilation.			
	 In air sealing, caulk is used to fill up cracks and openings between stationary 			
Measure	envelope components like window frames, fixed windows, and door frames. This			
Description	process is called caulking. Sealing of moving envelope components like doors and			
Description	operable windows using flexible strip materials is called weather-stripping. Air			
	sealing results in a decrease in cooling load due to lower air leakage rates.			
	 In the same measure, insulation is added to existing walls. This lowers the U value 			
	of wall reducing the heat gain coefficient for the building.			
Operation and				
Maintenance	Annual inspection of sealant quality will monitor replacement needs.			
Impacts				
	Consider the required rate of air change for an academic building. Sealing material should be			
Design	applied on clean surfaces and look coherent with framing for aesthetics. While selecting			
Considerations	building insulation, method and ease of installation, material finishing, life cycle costs should			
	be considered.			
Estimated Project	640.024			
Costs	\$18,021			
Annual Energy	Electricity: 12,795 (kWh)			
Savings	Total Energy Savings : 44 (MMBTU)			
Annual Cost Savings	\$3,199			
Saving ton CO2	11			
Emissions				
Simple Payback	6			
(years)	6			
	l			

ECM #5 SOLAR PV INSTALLATION

	Addition of a rooftop photovoltaic solar system.
	Solar PV installations generate an emissions free source of electricity. This reduces
Measure Description	greenhouse gas emissions, promotes energy independence, and saves on energy
	costs.
	 Rooftop solar plant with a capacity of 17.3 kW.
	 Proper maintenance and monitoring are essential to ensure long-term
	performance, maximize energy generation, and extend the system's lifespan.
	Regular cleaning and inspection of equipment is highly recommended.
Operation and	 Monitoring through a BMS system that records solar data can be beneficial to
Maintenance Impacts	both optimizing energy generation and academic opportunities to understand
	the system.
	 Regular safety inspections ensure that the PV installation meets safety standards
	and poses no hazards to personnel or the environment.
	Designing a solar photovoltaic (PV) installation requires careful planning to ensure that the
	system operates efficiently, generates maximum energy, and has a long lifespan.
	Mainly site assessment, system size and capacity, solar panel selection, inverter
Design Considerations	selection, mounting and racking, shading analysis, electrical design, monitoring
	and control, maintenance access, and environmental considerations.
	A solar PV plant with a capacity of 17.3 kW has been modelled on the roof of the
	building.
Estimated Project	
Costs	\$35,223
Annual Energy	Electricity: 36,304 (kWh)
Savings	
Javiligs	Total Energy Savings: 124 (MMBTU)
Annual Cost Savings	\$9,076
Saving ton CO2	21
Emissions	31
Simple Payback	
(years)	4
(1,200-2)	

On-Site Generation Measures

On-site generation measures generate power to meet electric needs of a facility.

Preliminary screenings were performed to determine the potential that a generation project could provide a cost-effective solution for your facility. Before deciding to implement, a feasibility study should be conducted that would take a detailed look at existing energy profiles, siting, interconnection, and the costs associated with the generation project including interconnection costs, departing load charges, and any additional special facilities charges.

Photovoltaic

Sunlight can be converted into electricity using photovoltaics (PV) modules. Modules are racked together into an array that produces direct current (DC) electricity. The DC current is converted to alternating current (AC) through an inverter. The inverter is interconnected to the facility's electrical distribution system. The amount of unobstructed area available determines how large of a solar array can be installed. The size of the array combined with the orientation, tilt, and shading elements determines the energy produced. A preliminary screening, based on the facility's electric demand, size, location, and unshaded free area, shows that the facility has a high potential for installing a PV array.

The amount of free area, ease of installation (location), and the lack of shading elements contribute to the potential for PV at the site. In order to be cost-effective, a solar PV array needs certain minimum criteria, such as flat or southfacing rooftop or other unshaded space on which to place the PV panels. In our opinion, the facility might not meet these minimum criteria for cost-effective PV installation.

Figure 7: Solar Panels Placement

Figure 7 above portrays the area and locations of the modelled solar panels. The modelled areas considered for solar panels can be seen in bright yellow and green labelled as Field Segment 3 and Field Segment 4. Green represents a higher average Total Solar Resource Fraction or the amount of sunlight the measured area will receive over the year. Field Segments 1, 2, and 5-12 were considered but placement restrictions deemed installation unfeasible, and modelling was not completed.

The modelling analysis was conducted through Helioscope, a solar simulation tool from the Folsom Labs. Based on our simulation, a relatively small rooftop PV array might be feasible. We estimate that the available space might support up to a 17.3 kW solar array. Such an array might produce up 36,304 kWh per year, which could save the college up to \$9,076 per year in electric purchases. Based on average costs for commercial solar installation and current CUC prices, such an installation might pay for itself in energy savings in 4 years. The available roof space needs to be properly accessed by a qualified solar installer to determine feasibility. A structural analysis of the roof

may be necessary as well. Roof conditions might make available roof space smaller than we assumed, or too costly to develop, which might make a solar array not economically viable for the site.

Intelligent Building Management System Measures

Energy efficiency is one of the many benefits of incorporating IoT into buildings. IoT ecosystem includes sensors, actuators, cloud-based software and communication protocols, layered and controlled by a central building management system (BMS) that helps optimize systems, allowing them to communicate with each other and work together.

IoT ecosystem is comprised of these components:

- Devices for monitoring and controlling energy use, which ideally identify areas of high consumption, actively control energy usage and indirectly control consumption based on factors such as occupancy, time of day, or other factors
- Location-based automatic controls that optimize controls in specific rooms or sections of a building, often in relation to time-based patterns, occupancy, weather or a variety of other factors
- Cloud-computing platforms that store data and run software, such as data analytics software that evaluates data
- Software applications that implement programmed energy efficiency strategies, such as integration software that interprets and communicates data between systems

Using IoT, energy efficiency is driven by automation. With data gathered by smart sensors, a BMS can turn off lights in unoccupied rooms, reduce airflow in office buildings on weekends, or automatically close blinds when windows are exposed to direct sunlight.

Energy-Saving IoT Devices

As physical hardware, IoT devices can be used to create greater energy efficiency throughout a building's systems.

These IoT devices include:

Lighting Controls

Lighting controls are comprised of both sensors and actuators that control lighting through the use of IoT. Energy efficiency results from lowering lighting output based on certain conditions. In a recent literature review focusing on lighting and controls in office environments that use IoT, energy efficiency estimates ranged widely. Results depended upon occupant behavior, control system type, patterns of activity, and other conditions. They showed between 17-94% savings from smart controls over manually controlled systems.

Daylight Sensors

These use photocells to turn off or dim lighting based on the amount of available natural light. These photo sensors can also be used to raise or lower blinds to optimize lighting. They typically achieve savings of more than 40%.

Occupancy Sensors

Sensors that automatically turn on or off lights based on whether a room is occupied use infrared or ultrasonic technology, and can also be used for managing heating and cooling as well. Occupancy sensors generated from 3-

60% in savings when used in lighting systems. Another study saw a 20% reduction in energy use from such sensors in HVAC systems.

HVAC Controllers

HVAC controllers using IoT technology could reduce energy use by 24%, according to a 2011 study by Pacific Northwest National Laboratory (PNNL). Sensors measure various conditions within a building, using this data to regulate output within climate control systems. Smart controllers typically use predefined set points to determine actions and can be deployed at certain key points or throughout a building. Some more advanced sensors and controls implement machine learning (ML) algorithms to enact real-time changes.

HVAC Economizer Controls

Pulling in cool outside air to reduce the need for electrical cooling, economizers use sensors to measure either air temperature or heat and humidity to determine actions based on energy efficiency and occupant comfort. Economizers generate 57% energy savings on average, but savings can range from 22-90% depending on a variety of conditions.

Smart Thermostats

These enable remote monitoring and control of temperature within built environments. More advanced models can automatically provide analytics on energy usage that include reports showing amounts saved on a monthly basis. Two independent studies that looked at a top manufacturer of smart thermostats reported that customers saved 15% on cooling and 10-12% on heating on average.

Variable Speed Drives

These are also known as adjustable speed drives, AC drives, inverter adjustable frequency drives, or variable frequency drives. In older buildings, fans in HVAC systems normally operate on a single speed, using dampers, throttles, and valves to control airflow. As these fans only operate at full speed, this results in significant energy wastage. Variable speed drives allow fans to operate at higher or lower speeds, according to the energy needed. Typically, variable speed drives reduce energy usage for heating and cooling in buildings between 24-35%. However, a 2017 study by the American Council for an Energy-Efficient Economy (ACEEE) estimated energy use savings between 15–50% from such controls.

Sensors for Predictive Building Maintenance

Networks of IoT sensors that are connected to building systems, equipment, and other infrastructure help optimize building performance and save on energy costs. However, lowering energy expenses is just one way they promote efficiency. By proactively identifying issues before they become problems, facility managers are also able to get ahead of maintenance and avoid catastrophic system failures.

IoT sensors used to deal with maintenance issues include:

- Early fault detection sensors that alert when unseen issues show a fault is imminent
- Failure detection sensors that detect faults and disable machinery to prevent wider failures, which helps prevent injuries and downtime

While predictive maintenance offers energy efficiency indirectly, it creates savings in other areas.

According to the US Department of Energy (DOE), predictive maintenance:

- Cuts downtime by 35-40%
- Decreases breakdowns by 70-75%
- Increases productivity by 20-25%
- Offers ten times the return on investment
- Reduces maintenance costs by 25-30%

Some IoT technology can detect structural damage by measuring strain and cracks at key points. More directly, sensors used in predictive maintenance detect maintenance issues in energy-sucking systems like HVAC and lighting, reducing costs by keeping these systems working optimally.

Smart Meters

When it comes to IoT, energy efficiency in buildings is built upon metering and monitoring. Smart meters are an essential tool in tracking energy use, generally offering immediate savings of about 10%. Over time, smart meters can deliver as much as 30 percent savings when utilized properly. Smart electric sub meters can also track energy consumption according to tenants, systems, or even individual plugs. Sub meters additionally help identify anomalies that indicate possible maintenance issues affecting energy consumption.

Energy Efficient Best Practices

Facility energy performance can also be improved through application of many low cost or no-cost energy efficiency strategies. By employing certain behavioral and operational changes and performing routine maintenance on building systems, equipment lifetime can be extended; occupant comfort, health and safety can be improved; and energy and O&M costs can be reduced. The recommendations below are provided as a framework for developing a whole building maintenance plan that is customized to your facility. Consult with qualified equipment specialists for details on proper maintenance and system operation.

Energy Tracking with ENERGY STAR® Portfolio Manager®

You've heard it before - you can't manage what you don't measure. ENERGY STAR® Portfolio Manager® is an online tool that you can use to measure and track energy and water consumption, as well as greenhouse gas emissions. Your account has already been established. Now you can continue to keep tabs on your energy performance every month.

Reduce Air Leakage

Air leakage, or infiltration, occurs when outside air enters a building uncontrollably through cracks and openings. Properly sealing such cracks and openings can significantly reduce heating and cooling costs, improve building durability, and create a healthier indoor environment. This includes caulking or installing weather stripping around leaky doors and windows allowing for better control of indoor air quality through controlled ventilation.

Close Doors and Windows

Ensure doors and windows are closed in conditioned spaces. Leaving doors and windows open leads to a significant increase in heat transfer between conditioned spaces and the outside air. Reducing a facility's air changes per hour (ACH) can lead to increased occupant comfort as well as significant heating and cooling savings, especially when combined with proper HVAC controls and adequate ventilation.

Ensure Lighting Controls Are Operating Properly

Lighting controls are very cost effective energy efficient devices, when installed and operating correctly. As part of a lighting maintenance schedule, lighting controls should be tested annually to ensure proper functioning. For occupancy sensors, this requires triggering the sensor and verifying that the sensor's timer settings are correct. For daylight sensors, maintenance involves cleaning of sensor lenses and confirming set points and sensitivity are appropriately configured.

Reduce Motor Short Cycling

Frequent stopping and starting of motors subjects rotors and other parts to substantial stress. This can result in component wear, reducing efficiency, and increasing maintenance costs. Adjust the load on the motor to limit the amount of unnecessary stopping and starting to improve motor performance.

Perform Routine Motor Maintenance

Motors consist of many moving parts whose collective degradation can contribute to a significant loss of motor efficiency. In order to prevent damage to motor components, routine maintenance should be performed. This maintenance consists of cleaning surfaces and ventilation openings on motors to prevent overheating, lubricating moving parts to reduce friction, inspecting belts and pulleys for wear and to ensure they are at proper alignment and tension, and cleaning and lubricating bearings. Consult a licensed technician to assess these and other motor maintenance strategies.

Practice Proper Use of Thermostat Schedules and Temperature Resets

Ensure thermostats are correctly set back. By employing proper set back temperatures and schedules, facility heating and cooling costs can be reduced dramatically during periods of low or no occupancy. As such, thermostats should be programmed for a setback of 5-10°F during low occupancy hours (reduce heating set points and increase cooling set points). Cooling load can be reduced further by increasing the facility's occupied set point temperature. In general, during the cooling season, thermostats should be set as high as possible without sacrificing occupant comfort.

Ensure Economizers are Functioning Properly

Economizers, when properly configured, can be used to significantly reduce mechanical cooling. However, if the outdoor thermostat or enthalpy control is malfunctioning or the damper is stuck or improperly adjusted, benefits from the economizer may not be fully realized. As such, periodic inspection and maintenance is required to ensure proper operation. This maintenance should be scheduled with maintenance of the facility's air conditioning system and should include proper setting of the outdoor thermostat/enthalpy control, inspection of control and damper operation, lubrication of damper connections, and adjustment of minimum damper position. A malfunctioning economizer can significantly increase the amount of heating and mechanical cooling required by introducing excess amounts of cold or hot outside air.

Check for and Seal Duct Leakage

Duct leakage in commercial buildings typically accounts for 5% to 25% of the supply airflow. In the case of rooftop air handlers, duct leakage can occur to the outside of the building, significantly increasing cooling and heating costs. By sealing sources of leakage, cooling, heating, and ventilation energy use can be reduced significantly, depending on the severity of air leakage

Perform Proper Water Heater Maintenance

At least once a year, drain a few gallons out of the water heater using the drain valve. If there is a lot of sediment or debris, then a full flush is recommended. Turn the temperature down and then completely drain the tank. Once a year check for any leaks or heavy corrosion on the pipes and valves. For gas water heaters, check the draft hood and make sure it is placed properly, with a few inches of air space between the tank and where it connects to the vent. Look for any corrosion or wear on the gas line and on the piping. If you noticed any black residue, soot or charred metal, this is a sign you may be having combustion issues and you should have the unit serviced by a professional. For electric water heaters, look for any signs of leaking such as rust streaks or residue around the upper and lower

panels covering the electrical components on the tank. For water heaters over three to four years old have a technician inspect the sacrificial anode annually.

Plug Load Controls

There are a variety of ways to limit the energy use of plug loads including increasing occupant awareness, removing under-utilized equipment, installing hardware controls, and using software controls. Some control steps to take are to enable the most aggressive power settings on existing devices or install load sensing or occupancy sensing (advanced) power strips. For additional information refer to "Plug Load Best Practices Guide" http://www.advancedbuildings.net/plug-load-best-practices-guide-offices.

Replace Computer Monitors

Replacing old computer monitors or displays with efficient monitors will reduce energy use. ENERGY STAR® rated monitors have specific requirements for on mode power consumption as well as idle and sleep mode power. According to the ENERGY STAR® website monitors that have earned the ENERGY STAR® label are 25% more efficient than standard monitors.

Water Conservation

Installing low-flow faucets or faucet aerators, low-flow showerheads, and kitchen sink pre-rinse spray valves saves both energy and water. These devices save energy by reducing the overall amount of hot water used hence reducing used heat the water. The flow ratings for EPA energy (http://www3.epa.gov/watersense/products) labeled devices are 1.5 gallons per minute (gpm) for bathroom faucets, 2.0 gpm for showerheads, and 1.28 gpm for pre-rinse spray valves. Installing dual flush or low-flow toilets and low-flow or waterless urinals are additional ways to reduce the sites water use, however, these devices do not provide energy savings at the site level. Any reduction in water use does however ultimately reduce grid level electricity use since a significant amount of electricity is used to deliver water from reservoirs to end users. The EPA Water Sense™ ratings for urinals is 0.5 gallons per flush (gpf) and toilets that use as little as 1.28 gpf (this is lower than the current 1.6 gpf federal standard).

Appendix – A 3D MODEL IMAGES

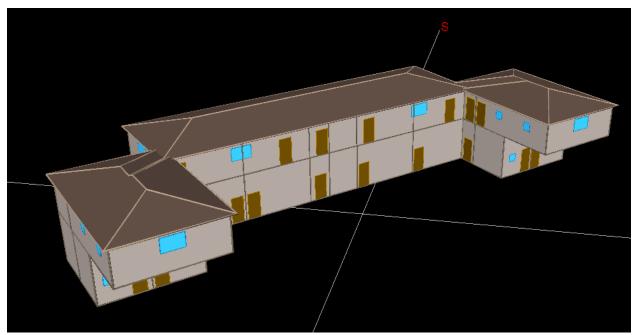


Figure 8: North-West Face

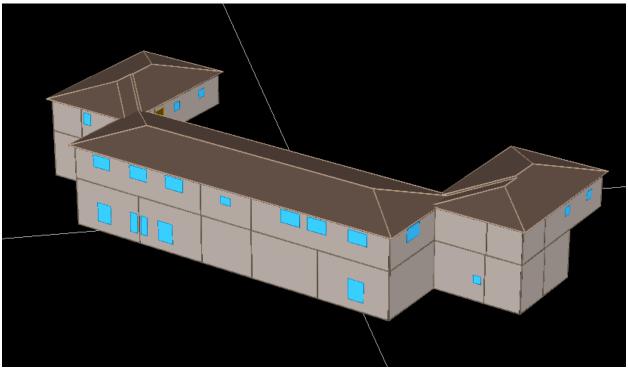


Figure 9: South-East Face

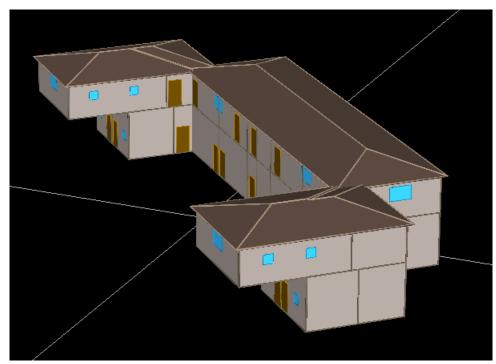


Figure 10: West-South Face

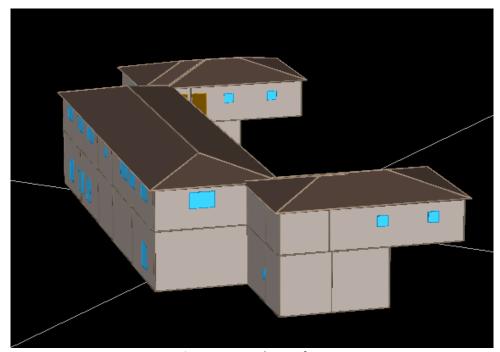


Figure 11: North-East face

Appendix - B

ENERGY MODEL INPUTS AND REFERENCE

Table 13: Input parameters

Building Information						
Project Name	The Hon. James Bodden Block					
Client Name	Dr. Christopher Williams					
	UCCI, Grand Cayman Campus, 168 Olympic Way, PO Box 702 Grand Cayman,					
Site Address	Cayman Islands KY1-1107					
Building typology	College -Educational Institutions					
No. stories	1 Floors					
Built-up area (sq. ft.)	6,905					
Utility Data						
Billed Electricity Consumption (kWh)	87,356					
Reference						
Weather file	CYM_SI_Grand.Cayman-East.End.783830_TMYx.2007-2021.BIN					
Schedule (Refer "to schedule" sheet)	Schedules are based on the building operation hours and the campus annu					
Scriedule (Refer to scriedule sheet)	calendar					
Exterior wall U-Value (Btu/h-ft2-F)	0.580 (ASHRAE 2004)					
Roof U-Value (Btu/h-ft2-F)	0.034 (ASHRAE 2004)					
Glass U-value (Btu/h-ft2-F)	1.47					
SC & VLT of glass	SC:0.60 & VLT: 0.80					
Occupancy						
Lighting Load						
LPD (W/sq. ft./kW)	Please find the Appendix D below					
Equipment Load						
EPD (W/sq. ft./kW)	Please find the Appendix D below					
Cooling System						
Type of cooling system	Condensing Unit (9) and Split DX system (1)					
EER /COP	9 to 12.8 EER					
Condensing Units capacities	318,000 Btu/hr. (Cumulatively)					
Manufactured Unit	Comfortstar /GOODMAN/ Lennox / Bryant Legacy (Please find the Appendix D below)					

ROOFTOP SOLAR PV CAPACITY HELIOSCOPE REPORT

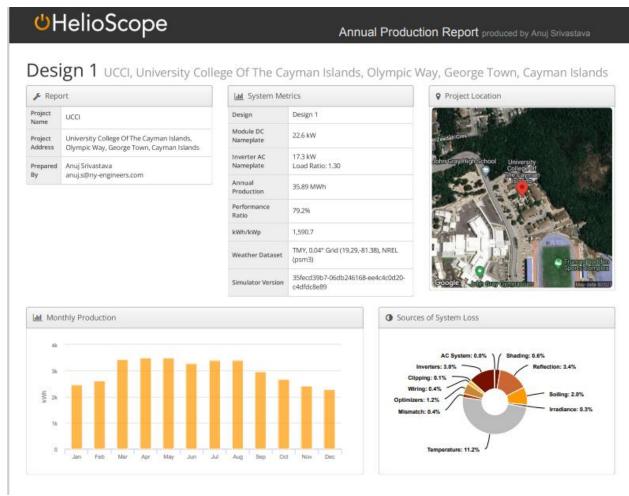


Figure 12: Solar PV Capacity

ASHRAE EPIDEMIC TASK FORCE

Core Recommendations for Reducing Airborne Infectious Aerosol Exposure

The following recommendations are the basis for the detailed guidance issued by ASHRAE Epidemic Task Force. They are based on the concept that within limits ventilation, filtration, and air cleaners can be deployed flexibly to achieve exposure reduction goals subject to constraints that may include comfort, energy use, and costs. This is done by setting targets for equivalent clean air supply rate and expressing the performance of filters, air cleaners, and other removal mechanisms in these terms.

- Public Health Guidance Follow all current regulatory and statutory requirements and recommendations, including vaccination, wearing of masks and other personal protective equipment, social distancing, administrative measures, circulation of occupants, hygiene, and sanitation.
- 2. Ventilation, Filtration, Air Cleaning
 - 2.1 Provide and maintain at least required minimum outdoor airflow rates for ventilation as specified by applicable codes and standards.
 - 2.2 Use combinations of filters and air cleaners that achieve MERV 13 or better levels of performance for air recirculated by HVAC systems.
 - 2.3 Only use air cleaners for which evidence of effectiveness and safety is clear.
 - 2.4 Select control options, including standalone filters and air cleaners, that provide desired exposure reduction while minimizing associated energy penalties.
- Air Distribution Where directional airflow is not specifically required, or not recommended as the
 result of a risk assessment, promote mixing of space air without causing strong air currents that
 increase direct transmission from person-to-person.
- 4. HVAC System Operation
 - 4.1 Maintain temperature and humidity design set points.
 - 4.2 Maintain equivalent clean air supply required for design occupancy whenever anyone is present in the space served by a system.
 - 4.3 When necessary to flush spaces between occupied periods, operate systems for a time required to achieve three air changes of equivalent clean air supply.
 - 4.4 Limit re-entry of contaminated air that may re-enter the building from energy recovery devices, outdoor air, and other sources to acceptable levels.
- 5. System Commissioning Verify that HVAC systems are functioning as designed.

Figure 13: ASHRAE epidemic task force

Appendix - C

MONTHLY ECMS SAVING DETAILS

CALIBRATION RESULTS

Table 14: Calibrated Electricity Utility Details

Month	Billed Electricity (KWh)	eQuest Calibrated Electricity consumption (kWh)	ECM 1 Lighting Control (KWh)	ECM 2 Window Upgradation (KWh)	ECM 3A BMS - Night Setback (NSB) (KWH)	ECM 3B BMS - Fan Control (KWH)	ECM 3C BMS - Optimal On-Off (KWH)	ECM 4 Weatherization (KWH)	ECM 5 Solar PV(KWH)
Jan	7,289	7,557	7,136	7,450	6,775	7,301	7,364	6,898	4,725
Feb	5,730	5,667	5,374	5,569	4,996	5,363	5,553	5,105	3,428
Mar	5,054	5,052	4,784	4,969	4,417	4,740	4,922	4,598	2,963
Apr	5,736	6,441	6,113	6,329	5,420	5,873	6,319	5,651	3,856
May	6,502	7,880	7,501	7,761	6,461	6,965	7,721	6,801	4,725
Jun	8,157	9,740	9,270	9,597	7,779	8,496	9,555	8,171	6,074
Jul	9,638	9,395	8,970	9,257	7,328	7,929	9,193	7,878	5,932
Aug	9,073	10,676	10,191	10,523	8,385	9,012	10,456	8,890	6,713
Sep	8,363	9,280	8,850	9,150	7,346	7,899	9,085	7,828	5,840
Oct	7,189	9,284	8,841	9,140	7,531	8,134	9,092	7,938	5,960
Nov	7,723	8,096	7,670	7,971	6,892	7,480	7,934	7,146	5,115
Dec	6,901	6,392	6,065	6,281	5,643	6,076	6,252	5,761	3,825
Total	87,356	95,460	90,765	93,997	78,973	85,268	93,446	82,665	59,156
Saving on	Saving on Baseline (KWh) (8,104)		4,695	1,463	16,487	10,192	2,014	12,795	36,304
	Saving on Baseline (%)		5%	2%	17%	11%	2%	13%	38%

Appendix - D

LIGHTING POWER DENSITY (LPD) CALCULATION SHEET

Table 15: Lighting Power Density Calculation Sheet

Location	Floor	Equipment Type	Code	Qty	Lighting Control	Lamp Type	Lamp Label	Watts/ Lamp	Lamps/ Fixture	total watts/ lamps	Total wattage	Area (ft²)	LPD (W/ft²)
1/ Microbiology lab	1	Fixture	LED	3	Wall Switch 1	LED - Fixtures	-	10	1	10			
1/ Microbiology lab	1	Fixture	LED-T8E-2L-4ft-2P	10	Wall Mounted Occupancy Sensor 1	LED - Linear Tubes	T8 Equiv	32	2	64	670	430.8	1.6
1/director of careers	1	Fixture	LED-T8E-2L-4ft-2P	2	Wall Switch 1	LED - Linear Tubes	T8 Equiv	32	2	64	128	121.7	1.1
1/Dr Swearing Office	1	Fixture	LED-T8E-2L-4ft-2P	2	Wall Switch 1	LED - Linear Tubes	T8 Equiv	32	2	64	128	94.3	1.4
1/electrical room	1	Fixture	LED-T8E-2L-4ft-2P	1	Wall Switch 1	LED - Linear Tubes	T8 Equiv	32	2	64	64		
1/female bathroom	1	Fixture	LED-1L-2P	1	Wall Switch 1	LED - Fixtures	-	32	2	64	64	145.3	0.4
1/female bathroom	1	Fixture	LED-T8E-2L-4ft-2P	1	Wall Switch 1	LED - Linear Tubes	T8 Equiv	32	2	64	64	144	0.4
1/Fernando Office	1	Fixture	LED-T8E-2L-4ft-2P	2	Wall Switch 1	LED - Linear Tubes	T8 Equiv	32	2	64	128	146.8	0.9
1/G1	1	Fixture	LED-T8E-2L-4ft-2P	8	Wall Switch 1	LED - Linear Tubes	T8 Equiv	32	2	64	512	450	1.1
1/G2	1	Fixture	LED-T8E-2L-4ft-2P	7	Wall Switch 1	LED - Linear Tubes	T8 Equiv	32	2	64	448	432.9	1.0
1/G4	1	Fixture	LED-T8E-2L-4ft-2P	8	Wall Switch 1	LED - Linear Tubes	T8 Equiv	32	2	64	512	443.7	1.2

1/Janitor Office	1	Fixture	LED-T8E-2L-4ft-2P	2	Wall Switch 1	LED - Linear Tubes	T8 Equiv	32	2	64	128	92	1.39
Exterior light 1	1	Fixture	LED-1L	1		LED - Fixtures	-	250	1	250	250		
2/Biology Lab	2	Fixture	LED-22W-2L-D/I-SM- 2P	18	Wall Switch 1	LED - Lamps	-	22	2	44	792	880.8	0.9
2/Chemistry Lab	2	Fixture	LED-22W-2L-D/I-SM- 2P	2	Wall Switch 1	LED - Lamps	-	22	2	44	88	336	0.3
2/computer lab1	2	Fixture	LED-A2x4-40W-1L-D/I- SM-HW	8	Wall Switch 1	LED - Fixtures	Ambient 2x4	40	1	40	576	595.4	0.97
2/computer lab1	2	Fixture	LF-T8(e)-32W-4L-4ft- PA-SM-2P-RS	2	Wall Switch 2	Linear Fluorescent	Т8	32	4	128	5/6	393.4	0.97
2/computer lab2	2	Fixture	LED-A2x4-40W-1L-D/I- SM-HW	10	Wall Switch 1	LED - Fixtures	Ambient 2x4	40	1	40	400	598.5	0.67
2/corridor	2	Fixture	LED-DNR-10W-1L-Can- RCV6-ES	6	Wall Switch 1	LED - Fixtures	Downligh t Recessed	10	1	10	60	400	0.15
2/female restroom	2	Fixture	LED-22W-2L-D/I-SM- 2P	2	Wall Switch 1	LED - Lamps	-	22	2	44	88	155.4 5	0.57
2/male restroom	2	Fixture	LED-22W-2L-D/I-SM- 2P	2	Wall Switch 1	LED - Lamps	-	22	2	44	88	155.4 5	0.57
Store- Microbiology Lab	1	Fixture		1	Wall Switch 2	LED - Lamps		32	2	64	64	155.4 5	0.4
medical care office	1	Fixture		1	Wall Switch 3	LED - Lamps		32	2	64	64	94.3	0.68
College Sick Bay	1	Fixture		2	Wall Switch 4	LED - Lamps		32	2	64	128	132.8	0.96
Medical Room	1	Fixture		2	Wall Switch 5	LED - Lamps		32	2	64	128	136.3	0.94

EQUIPMENT POWER DENSITY (EPD) CALCULATION SHEET

Table 16: Equipment Power Density Calculation Sheet

Floor	Location	Equipment Type	Model number	Make	Qty	Power Consumption (W)	Total Power Consumption (W)	Area (ft2)	EPD(W/ft2)
1	Microbiology Lab	Lab Oven	40GC	QL	1	1600	1600	430.8	3.71
1	Small Microbiology	Seam Sterilizer	EZ10	Tuttnauer Autoclave	1	1400	1400		
1	Small Microbiology	Lab Incubator	12-140	QL	2	235	470	115.5	31.13
1	Small Microbiology	Refrigerator	ED5FVGXWS07	Whirlpool	1	1725	1725		
1	Microbiology Lab	Projector	4220 Series	Dell	1	375	375	430.8	12.94
1	Microbiology Lab	Washing machine & dryer	LTE5243DQB	Whirlpool	1	3600	5200	430.8	12.94
1	G4 -Classroom	Projector	HD28i	Optoma	1	266	266	450	0.59
1	G2 -Classroom	Projector	1609WX	Dell	1	256	256	432.9	0.59
1	G1 -Classroom	Projector	1510X	Dell	1	287	287	443.7	0.65
1	Director Room	Monitor	E271i	НР	1	40	40		
1	Director Room	CPU	Prodesk	НР	1	42	42	121.7	10.04
1	Director Room	Microwave Oven	EM720CPI-PM	Black + Decker	1	1050	1050	121.7	10.04
1	Director Room	Mini Refrigerator		Frigidaire	1	90	90		
1	Restroom	Exhaust Fan	AK80LS-1	Air King	4	28.1	112.4	595.5	0.19
1	Microbiology Lab	Exhaust Fan	BFQI70	Air King	2	22.6	45.2	221	0.20
2	Computer Lab 1	Printer	P1566	HP Laser Jet Pro	1	583	583		
2	Computer Lab 1	LCD Monitor	L1706	НР	17	37	629	595.4	7.07
2	Computer Lab 1	CPU	Vostro 420 Tower	Dell	15	200	3000		
2	Biology Lab	Lab Water Bath		Carolina	2	1100	2200	880.8	2.82
2	Biology Lab	Projector	1510X	Dell	1	287	287	880.8	2.82
2	Store	Lab Oven	30GC	QL	1	1200	1200	336	3.57
2	Chemistry Lab	Projector	1510X	Dell	1	287	287	877.3	0.33
2	Computer Lab 2	Printer and toner	4250	НР	1	670	670		
2	Computer Lab 2	LCD Monitor	L1706	НР	16	37	592	598.5	6.12
2	Computer Lab 2	СРИ	Vostro 420 Tower	Dell	16	150	2400		

HVAC SYSTEM AUDIT SURVEY SHEET

Table 17: HVAC Audit Sheet

Zone Name	System type	Model Number	Cooling Capacity	Energy Efficiency Ratio (EER)	Make of the Model	Year of Manufactured
G1 Classroom	Split AC	CPS18CD (I)/(O)	18000 BTU/hr	11	Comfortstar	NA
Computer Lab 2	Condensing Unit	GSX160361FG	36,000 BTU/hr	12.8	GOODMAN	2021
Chemistry Lab	Condensing Unit	116BNA036-B	36,000 BTU/hr	12.8	Bryant Legacy	NA
G2 Classroom	Condensing Unit	GSX160241FA	24,000 BTU/hr	NA	GOODMAN	NA
Director & HR office	Condensing Unit	GSX16S301AB	30,000 BTU/hr	12.8	GOODMAN	2019
G4 Classroom	Condensing Unit	AFAIR10B24	24,000 BTU/hr	9.2	Lennox	2005
Microbiology Lab	Condensing Unit	AFAIR10B24	24,000 BTU/hr	9.2	Lennox	2005
Sick Bay	Condensing Unit	GSX160181FF	18,000 BTU/hr	12.8	GOODMAN	2020
Computer lab 1	Condensing Unit	GSC140601AA	60,000 Btu/h	NA	GOODMAN	NA
Biology Lab	Condensing Unit	GSX16S481AA	48,000 BTU/hr	12.8	GOODMAN	2018

Appendix – E

ESTIMATED COSTING PER ECMS

Table 18: Estimation Project Cost Details

S N	ECM				Total (Material + Labor)
1	Lighting Controls		Unit	Quantity	\$2,849
	Occupancy Sensor		EA	24	\$2,849
2	Window Upgrade				\$3,309
	New Glass Window		Area (ft²)	363	\$3,909
3A	BMS – Night Setback (NSB)				\$17,358
	Control Software		Points	17	\$1,019
	Start-up Labor / hr.		EA	1	\$150
	Controller , 128 Point		EA	1	\$67
	Communications Cable/ LF	\$/PANEL	LF	170	\$762
	Space Temperature		EA	17	\$5,628
	Space Humidity		EA	17	\$9,732
3B	BMS – Fan Schedule				\$7,925
	Control Software		Points	17	\$1,019
	Start-up Labor / hr		EA	3	\$450
	Controller , 128 Point		EA	1	\$67
	Communications Cable/ LF	\$/PANEL	LF	170	\$762
	Space Temperature		EA	17	\$5628
3C	BMS – Optimal On-Off				\$2,148
	Control Software		Points	17	\$1,019
	Start-up Labor / hr		EA	2	\$300
	Controller , 128 Point		EA	1	\$67
	Communications Cable/ LF	\$/PANEL	LF	170	\$762
4	Weatherization				\$18,021
	Air Sealing		ft2	363	\$315
	Wall insulation (R5.7)		ft2	8,107	\$17,706
5	Solar PV Installation				\$35,223
	Solar Panels - Hanwha Q Cell Q.Peak DUO XL - G10.3/BFG (485W)		Watt	17,300	\$35,223

NEWYORK ENGINEERS

University College of Cayman Islands, Grand Cayman Campus – The Hon. James Booden Block, 168 Olympic Way, PO Box 702 Grand Cayman, Cayman Islands KY1-1107